Spread Spectrum Code Estimation by Particle Swarm Algorithm
نویسندگان
چکیده
In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter’s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process. Keywords—Code estimation, Particle Swarm Optimization (PSO), Spread spectrum.
منابع مشابه
Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms
A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملSELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)
This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...
متن کاملA NEW MEMETIC SWARM OPTIMIZATION FOR SPECTRAL LAYOUT DESIGN OF BRACED FRAMES
For most practical purposes, true topology optimization of a braced frame should be synchronized with its sizing. An integrated layout optimization is formulated here to simultaneously account for both member sizing and bracings’ topology in such a problem. Code-specific seismic design spectrum is applied to unify the earthquake excitation. The problem is solved for minimal structural weight un...
متن کاملParticle Filtering for Joint Symbol and Code Delay Estimation in DS Spread Spectrum Systems in Multipath Environment
We develop a new receiver for joint symbol, channel characteristics, and code delay estimation for DS spread spectrum systems under conditions of multipath fading. The approach is based on particle filtering techniques and combines sequential importance sampling, a selection scheme, and a variance reduction technique. Several algorithms involving both deterministic and randomized schemes are co...
متن کامل